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Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead
spring and atomistic polyethylene polymer melts. Estimators for the entanglement length Ne which operate on
results for a single chain length N are shown to produce systematic O�1 /N� errors. The mathematical roots of
these errors are identified as �a� treating chain ends as entanglements and �b� neglecting non-Gaussian correc-
tions to chain and primitive path dimensions. The prefactors for the O�1 /N� errors may be large; in general
their magnitude depends both on the polymer model and the method used to obtain primitive paths. We
propose, derive, and test new estimators which eliminate these systematic errors using information obtainable
from the variation in entanglement characteristics with chain length. The new estimators produce accurate
results for Ne from marginally entangled systems. Formulas based on direct enumeration of entanglements
appear to converge faster and are simpler to apply.
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I. INTRODUCTION

The features of polymer melt rheology are determined
primarily by the random-walk-like structure of the constitu-
ent chains and the fact that chains cannot cross. The motion
of sufficiently long chains is limited by “entanglements”
which are topological constraints imposed by the other
chains. These become important and dramatically change
many melt properties �e.g., diffusivity and viscosity� as the
degree of polymerization becomes larger than the “entangle-
ment length” Ne. The value of Ne is both a key quantity
measured in mechanical and rheological experiments and a
key parameter in tube theories of dense polymeric systems
�1�.

Ne is usually considered to be a number set by chemistry
and thermodynamic conditions �e.g., chain stiffness, concen-
tration, and temperature�. It has been empirically related to a
“packing” length �2�: Ne� ��b3�−2 �3�, where � is the mono-
mer number density and b2= �Ree

2 / �N−1�� is the statistical
segment length of chains with end-to-end distance Ree and
mean degree of polymerization N. In terms of individual en-
tanglements, Ne is defined as the ratio between N and the
mean number of entanglements per chain �Z�, in the limit of
infinite chain length,

Ne = lim
N→�

N

�Z�
. �1�

We call a function Ne�N� an Ne estimate if it has the property

lim
N→�

Ne�N� = Ne, �2�

where Ne is a system dependent but N-independent quantity.
Comparing Eq. �1� with Eq. �2� does not imply choosing
Ne�N�=N / �Z�. The typical experimental Ne estimate uses the
plateau modulus GN

0 �1�,

Ne�N� =
4�kBT

5GN
0 , �3�

where kB is the Boltzmann constant and T is temperature.
A closely related theoretical construct is the primitive path

�PP�, defined by Edwards �4� as the shortest path a chain
fixed at its ends can follow without crossing any other
chains. Rubinstein and Helfand �5� realized that the entangle-
ment network of a system could be obtained by reducing all
chains to their PPs simultaneously. Such a reduction process
is analytically intractable, but has recently been achieved by
computer simulations �6–13�, which generate networks of
PPs from model polymer melts, glasses, random jammed
packings, and solutions. These simulations estimate Ne either
from the chain statistics of the PPs �6,8,9� or from direct
enumeration of entanglements �contacts between PPs�
�7,10–12,14,15�, which determines �Z�.

Chain-statistical and direct enumeration approaches pro-
duce different results for Ne for the same atomistic configu-
rations, suggesting that “rheological” and “topological” en-
tanglements are not equivalent �15�. This discrepancy has
been attributed to the fact that chemical distances between
entanglements are not uniform, but rather are drawn from
broad distributions �7,10,14–16�, even at equilibrium. Stud-
ies of how entanglement properties change with N are there-
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fore of obvious interest. Moreover, primitive path statistics
enter recently developed slip-link-based models �17�.

In this paper we seek an “ideal” Ne estimate which ap-
proaches Ne at the smallest possible N. There have been sev-
eral attempts in the literature, summarized below, to derive
Ne estimates, but these have all exhibited poor convergence
�i.e., by approaching Ne only at large N�Ne�. Molecular
dynamics simulation times increase with chain length N ap-
proximately as N5 at large N �relaxation time ��N3.5 times
system size �N3/2�, so improved Ne estimates have obvious
benefits for computationally efficient determination of Ne.
By analyzing a number of coarse-grained and atomistic sys-
tems, we find a rather general solution to this problem of
setting up a Ne estimator, which allows one to predict Ne
from weakly entangled linear polymer melts.

The organization of this paper is as follows. Section II
presents the polymer models used here and the topological
analysis methods which provide us with the entanglement
network �primitive paths�. Section III distinguishes between
valid and quickly converging �ideal� Ne estimators, and dis-
cusses some model- and method-independent issues with ex-
isting estimators. Examples are given which highlight sys-
tematic errors caused by improper treatment of chain ends
and of the non-Gaussian statistics of chains and primitive
paths. Section IV derives two �potentially� near-ideal estima-
tors which extract Ne from the variation in entanglement
characteristics with N. Section V presents and discusses nu-
merical results for these estimators for two very different
model polymers. We verify that they are basically ideal, ex-
plain why this is so, and derive simplified forms which fur-
ther illustrate the connection of Ne to chain structure and
entanglement statistics and are also near ideal. Section VI
contains conclusions, and two appendixes provide additional
technical details.

II. POLYMER MODELS AND METHODS

A. Model polymer systems

We have created thoroughly equilibrated configurations
for two very different �but commonly used� model polymer
melts; monodisperse “Kremer-Grest” bead-spring chains,
and atomistic, polydisperse polyethylene. These two are cho-
sen because they have similar values of Ne but very different
chain stiffness constants C���. Polyethylene is much more
“tightly entangled” �18� in the sense of having a much lower
value of Ne /C���; cf. Tables II and III.

The bead spring model �19� captures the features of poly-
mers which are key to entanglement physics, most impor-
tantly chain connectivity/uncrossability. Each chain contains
N beads of mass m. All beads interact via the truncated and
shifted Lennard-Jones potential ULJ�r�=4�LJ��� /r�12

− �� /r�6− �� /rc�12+ �� /rc�6�, where rc=21/6� is the cutoff ra-
dius and ULJ�r�=0 for r�rc. Here � is the bead diameter and
�LJ is the binding energy, which are both set to 1; all quan-
tities will thus be dimensionless and given in the conven-
tional Lennard-Jones �LJ� units. Covalent bonds between ad-
jacent monomers on a chain are modeled using the finitely
extendable elastic �FENE� potential U�r�=− 1

2kR0
2 ln�1

− �r /R0�2�, with the canonical parameter choices R0=1.5 and

k=30 �19�. The equilibrium bond length is l0�0.96. This
model is hereafter referred to as the “LJ+FENE” model.

Values of the density and temperature ��=0.85 and T
=1.0� are those typically used for melt simulations �6,9,19�.
All systems contain 280 000 total beads. While all are mono-
disperse, we employ a wide range of chain lengths, 4	N
	3500. Those with N
100 are equilibrated using the
“double-bridging hybrid” �DBH� algorithm �20�. DBH uses
molecular dynamics to update monomer positions and Monte
Carlo chain-topology-altering moves �21� to overcome the
slow diffusive dynamics �1� of entangled chains. All equili-
bration simulations were performed using the LAMMPS �22�
molecular-dynamics code. Reference �19� predicted Ne�35
at the above-mentioned state point using various “rheologi-
cal” measures applied to systems with N	400, while a simi-
lar analysis in �23� predicted Ne�75.

In all simulations of the atomistic polyethylene �PE� melt,
the united atom representation is adopted. Accordingly, car-
bon atoms along with their bonded hydrogen atoms are
lumped into single spherical interacting sites. There is no
distinction between methyl and methylene units in the inter-
action potentials. All bond lengths are kept constant �l0
=1.54 Å�, while bending and torsion angles are, respec-
tively, governed by harmonic and sum-of-cosine potentials
�24,25�. Pair interactions between all intermolecular neigh-
bors, and intramolecular neighbors separated by more than
three bonds, are described by the 12–6 Lennard-Jones poten-
tial. The parameters of the mathematical formulas for the
bonded and nonbonded interactions are given in Refs.
�10,21,24,25�. These interaction potentials yield accurate
predictions of the volumetric, structural and conformational
properties of PE melts over a wide range of chain lengths
and temperatures �21,24�.

All atomistic PE systems were equilibrated through
Monte Carlo �MC� simulations based on advanced chain-
connectivity-altering algorithms: the end-bridging �26� and
double bridging �21,25� moves along with their intramolecu-
lar variants. The simulated systems are characterized by av-
erage chain lengths from N=24 up to N=1000, with a small
degree of polydispersity. Chain lengths are uniformly distrib-
uted over the interval ��1−��N , �1+��N�. Here �, the half
width of the uniform chain length distribution reduced by N,
is 0.5 and 0.4 for 24	N	224 and 270	N	1000, respec-
tively. More details about the MC scheme, including a full
list of moves, attempt probabilities, and acceptance rates, can
be found elsewhere �24�. Equilibration at all length scales,
which is essential to obtaining meaningful results from en-
tanglement analyses �27�, was verified using several metrics
�24�. In this study, results are presented for T=400 K and
T=450 K, both for P=1 atm.

B. Entanglement network and primitive paths

For the melt configurations the reduction to primitive
paths was performed using two methods, PPA and Z, using
the procedures described in Refs. �6,7,9,14�. PPA simulations
used LAMMPS and Z simulations used the Z1 code �28�. Both
PPA and Z1 analyses are performed for the LJ+FENE
model, while only Z1 analysis is performed for PE. In both
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methods, all chain ends are fixed in space. Intrachain ex-
cluded volume interactions are disabled while chain uncross-
ability is retained. Both classical PPA �6� and geometrical
methods �Z1 �7,14� or CReTA �11,15�� provide the configu-
ration of the entanglement network and the contour lengths
Lpp of each primitive path. In PPA, disabling intrachain ex-
cluded volume produces a tensile force �29� in chains which
reduces the contour lengths. In Z1, contour lengths are
monotonically reduced through geometrical moves in the
limit of zero primitive chain thickness. In addition to Lpp and
the configuration of the entanglement network, Z1 analysis
also yields the number of interior “kinks” �7�, Z, in the three-
dimensional primitive path of each chain. �Z� is considered
to be proportional to the number of entanglements, regard-
less of the details of the definition used to define an entangle-
ment.

Runs end when the mean length of the primitive paths,
�Lpp�, and/or the mean number of interior kinks per chain,
�Z�, converge. Self-entanglements are neglected, but their
number is inconsequential for the systems considered here
�9�. The CReTA method works similarly, and the conclusions
reached here for Z1 analysis should apply similarly to
CReTA results �14,15�.

Table I summarizes chain and primitive path dimensions
as well as �Z� for LJ+FENE chains with 20	N	3500. Sta-
tistically independent initial states were used so that the ran-
dom error on all quantities is �2.5%. It is remarkable that
PPA and Z1 data for �Lpp� and also �Lpp

2 � are so similar,
considering the differences between the contour length re-
duction methods. Relative to Z1 results, PPA values of �Lpp�
are increased by finite chain thickness effects �11,30� and
decreased by chain end slip-off �14�. Both these effects
should decrease in strength as N increases, and indeed

�Lpp
2 �PPA / �Lpp

2 �Z1 decreases from �1.17 to �1.06 over the
range 20	N	3500. A very comparable trend is offered by
�Lpp�PPA

2 / �Lpp�Z1
2 .

PPA results for the shortest chains �N
20� are not pre-
sented. Standard PPA is unreliable for very short chains be-
cause the presence of a high concentration of fixed chain
ends combined with the finite bead diameter effectively in-
hibits relaxation �11,30�. These problems are even worse for
topological analysis of lattice polymer systems—see, e.g.,
Ref. �12�. In the following, where �as will be shown� accu-
rate data from very short chains are important, we focus on
Z1 results.

III. TOWARD VALID ESTIMATORS

A basic task of topological analysis is to calculate Ne from
the full microscopic configuration of the entanglement net-
work. The simplest approaches employ only the mean-square
end-to-end distance of chains �Ree

2 � and either the mean
length of the primitive paths �Lpp� or the mean number of
kinks �Z�. Notice that �Z� is not an integer, but semipositive,
�Z�
0. In order to estimate Ne from weakly entangled sys-
tems one of course needs physical insight; when this is lim-
ited, a good Ne estimator can only be guessed.

Some restrictions arise from a purely mathematical view-
point. A valid estimator Ne�N� has the following properties:

�i� It obeys Eq. �2� and uses information from polymer
configurations whose mean chain length does not exceed N;

�ii� It either yields Ne�N�
N or leaves Ne�N� undefined
for a system of completely unentangled ��Z�=0� chains;

�iii� An “ideal” estimator we define to correctly predict Ne
for all N exceeding Ne, or for all �Z� exceeding unity.

TABLE I. Chain and primitive path dimensions for PPA and Z1 as well as number of kinks �Z� for Z1 for
the LJ+FENE polymer melt. All quantities given in reduced LJ units. It is remarkable that values obtained
via Z1 and PPA are very comparable, suggesting that chain thickness and slippage effects seem to cancel as
discussed in �14�.

N �Ree
2 � �Lpp�PPA

2 �Lpp
2 �PPA �Lpp�Z1

2 �Lpp
2 �Z1 �Z�Z1

20 29.24 33.18 37.56 28.21 32.16 0.127

28 42.85 51.86 58.66 44.03 50.32 0.287

35 54.69 71.01 79.85 60.52 69.00 0.462

50 80.30 116.2 129.8 100.2 113.9 0.823

70 114.9 193.3 213.4 169.7 190.7 1.337

100 169.1 343.0 373.3 301.8 334.8 1.995

125 215.2 483.7 522.1 431.9 475.4 2.514

140 233.0 593.5 633.2 528.1 576.6 2.876

175 289.5 847.9 900.2 766.5 831.1 3.541

250 421.9 1646 1716 1481 1577 5.089

350 609.4 3143 3245 2764 2907 7.168

500 831.0 6050 6188 5527 5738 10.261

700 1203 1.170�104 1.189�104 1.057�104 1.084�104 14.343

875 1521 1.757�104 1.779�104 1.624�104 1.659�104 17.793

1750 3003 6.769�104 6.806�104 6.215�104 6.294�104 35.204

3500 6157 2.591�105 2.599�105 2.441�105 2.457�105 70.444
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Accordingly, for an ideal estimator, the following weaker
conditions hold:

�iv� An ideal estimator diverges for a system of rodlike
chains possessing Ne=�, and

�v� It exhibits Ne�N�	N when each chain has in average
more than a single entanglement, �Z��1.

The following two subsections repeat earlier approaches
to estimate Ne. Basic considerations of finite chain length
effects, errors from improper treatment of non-Gaussian
structure, and the general behavior of quantities entering Ne
are discussed. These subsections are meant to prepare the
reader for the ideal estimators to be presented in Sec. IV.
They reflect the chronology of our search for better estima-
tors and help the reader to understand the magnitude of im-
provements presented in Sec. V. The arguments given here
ultimately point the way to construct ideal estimators.

A. Nonideal estimators

Modeling primitive paths as random walks, Everaers et al.
�6� developed an estimator �which we denote as “classical
S-coil”� which operates on results for configurations
�“coils”� of a single �S� chain length,

Ne�N� = �N − 1�
�Ree

2 �
�Lpp�2 . �4�

The classical S-coil estimate �4� is useful because �for long
chains� it relates changes in chain structure to rheological
trends �6,18�. However, while it fulfills basic requirements �i�
and �ii� �both unentangled and rodlike chains have Ree=Lpp�,
it lacks properties �iii� and �iv�. As the exact relation of
�Ree

2 � / �Lpp�2 and �Z� is unknown, it is a priori unclear
whether it has property �v�.

The corresponding estimator operating on the number of
kinks, �Z�, and originally employed in �7�, denoted here as
“classical S-kink,” is

Ne�N� =
N�N − 1�

�Z��N − 1� + N
, �5�

which fulfills the basic requirements �i� and �ii�, and also �v�,
but lacks �iii� according to Ref. �10� and �iv� by definition.
The presence of both N−1 and N in Eqs. �4� and �5�, and
subsequent estimators reflects the fact that it is the existence
of a bond rather than a bead which is responsible for the
presence or absence of an entanglement between two chain
contours.

The performance of the two classical estimators �4� and
�5� for the two polymer models considered here is illustrated
in Fig. 1. Values of Ne�N� converge very slowly with in-
creasing N. As expected from their form, but contrary to both
rheological intuition and condition �ii�, values of Ne�N� drop
strongly with decreasing N. For marginally entangled chains
�where N is just large enough so that �Z� is small but non-
zero�, both classical estimators yield Ne�N�	N−1. For ex-
ample, for N=20, they both predict Ne�N�=17, which is
close to the �improper� upper bound N−1=19. This predic-
tion obviously has no connection to the actual topology of
the system.

Thus Eqs. �4� and �5� always underestimate, but never
overestimate Ne. This feature of the two estimators in the
limit of unentangled chains is particularly �if retrospectively�
disappointing, as it is incompatible with goal �iii�. Similar
behavior was reported �but not analyzed as in this paper� in
Refs. �31–33�.

Other previously published Ne estimators �9,11,16,34�
also have some, but not all, of properties �i�–�v�. One of the
most promising was proposed in Ref. �9�. It estimates Ne
from the internal statistics of primitive paths, for a single N.
The squared Euclidean distances �R2�n�� between monomers
separated by chemical distance n	N−1 after topological
analysis �i.e., the chain statistics of the primitive paths� were
fit �9� to those of a freely rotating chain with fixed bond
length fixed bending angle. Ne was then identified with the
chain stiffness constant C��� of the freely rotating chain
�35�. This estimator does not obviously fail to meet any of
conditions �i�–�v�. In Ref. �9� it gave values of Ne�N�, which
decreased more slowly than Eq. �4� as N decreased. Unfor-
tunately, its predictions agree with Eq. �4� at moderate N
�100 and thus it fails condition �iii�.

New S estimators based on modifications to Eqs. �4� and
�5� may be proposed. During the course of developing ideal
estimators �to be introduced in Sec. IV�, we developed two
modified single chain length estimators which tend to ap-
proach Ne from above rather than from below. These are the
“modified S-kink” estimator,

Ne�N� =
N

�Z�
, �6�

and the mathematically similar “modified S-coil” estimator
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FIG. 1. �Color online� Performance of classical Ne estimators
Ne�N� based on coils �4� �upper two curves� and kinks �5�. Data are
shown for the two model polymer melts studied in this manuscript.
The trends with N are in agreement with published results for other
systems �7,10,11,14,31–33�. The convergence behavior is poor, as
Ne	 limN→� Ne�N� obviously cannot be extrapolated studying
chains with N
100, while Ne turns out to stay well below 100 for
both systems. An “ideal estimator,” as defined in Sec. III, would
converge when N exceeds Ne or earlier.
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Ne�N� = �N − 1�
 �Lpp
2 �

�Ree
2 �

− 1�−1

. �7�

A motivation for the use of �Lpp
2 � rather than �Lpp�2 in Eq. �7�

appears in Appendix A. Figure 2 shows results for Eqs. �6�
and �7� for the same systems analyzed in Fig. 1. Both modi-
fied single-chain estimators give Ne�N�=� for unentangled
chains, thus fulfilling criterion �iv� in addition to �i� and �ii�,
but they still fail to fulfill goal �iii� since they tend to over-
estimate Ne for weakly entangled chains.

B. Errors from improper treatment of non-Gaussian
structure and chain ends

Critically, none of the above-mentioned estimators seem
to be able to predict Ne�N�=Ne for weakly entangled sys-
tems with a slightly positive �Z��1. All above-cited previ-
ous works as well as Eq. �7� have only produced conver-
gence for N�Ne, and we are not aware of any studies where
convergence has been achieved at N�Ne, i.e., we are not
aware of the former existence of any ideal Ne estimator.
However, the failure of so many previous attempts both
makes it worth examining the common reasons why they
have failed, and in fact points the way to creating ideal Ne
estimators.

To leading order in �	�N−1�−1 �i.e., the inverse number
of bonds�, data for a wide variety of model polymers �see,
e.g., Refs. �20,24,31��, as well as the data obtained in this
study �see Fig. 3�a�� are consistent with

�Ree
2 ���� = D/� − Y , �8�

where the relative magnitudes of the constant coefficients Y
and D depend on factors such as chain stiffness, molecular
details, and thermodynamic conditions.

Also, orientations of successive PP segments are corre-
lated �11�, so �Lpp�2 should not be simply quadratic in chain
length. The expected leading-order behavior of �Lpp�2 is

�Lpp�2��� = A/�2 + B/� , �9�

where B contains contributions from non-Gaussian statistics
and contour length fluctuations �1�. Relationships �8� and �9�
are consistent with data reported elsewhere �e.g., Refs.
�24,32�� as well with our own data, as shown in Fig. 3.

At this point it is worthwhile to mention that we are going
to make use of Eq. �9�, which is able to capture our results
for �Lpp

2 � down to chain lengths N small compared with Ne, to
devise an ideal estimator in Sec. IV. Relationship �8� how-
ever, as we will see, will not be required to hold to devise an
ideal estimator.

Inserting Eqs. �8� and �9� into the classical and modified
S-coil, Eqs. �4� and �7�, respectively, give to leading order in
�,

Ne�N� =
�4�D

A
−

AY + BD

A2 � + O��2� , �10a�

Ne�N� =
�7�D

A
+

D2 − AY − BD

A2 � + O��2� . �10b�

Thus non-Gaussian structure of both chains and primitive
paths naturally lead to systematic O����O�1 /N� errors in
earlier estimators for Ne �36�.

Similarly, �Z� necessarily scales as �−1 in the N→� limit.
In the same spirit as the above analysis, and noting the fail-
ure �Fig. 2� of Eqs. �5� and �6� to meet condition �iii�, let us
hypothesize that finite chain length leads to the leading-order
behavior,

�Z���� = G/� − H , �11�

where G and H are both positive. This assumption is actually
consistent with the data in Table I and previous works �24�;
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FIG. 2. �Color online� �a� Performance of modified S-kink esti-
mator �6� �lower two curves� and the modified S-coil �7� �upper two
curves�. which approach Ne from above. Data are for the same
systems analyzed in Fig. 1. The single-configuration estimator for
kinks exhibits an improved convergence behavior compared with
Eq. �5�. Under circumstances discussed in Sec. V, application of
both modified and original classical estimators allows one to obtain
lower and upper bounds on Ne which tighten with increasing N. �b�
Shown are the relative differences �“gap �%�”� between Ne�N� val-
ues shown in Fig. 1 and the ones plotted in part �a� of the current
graph. Differences are smaller for Ne estimated from kinks �lower
two curves�.
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see also Sec. IV. The classical and modified S-kink Eqs. �5�
and �6� then become

Ne�N� =
�11�in�5� 1

G
−

1 − G − H

G2 � + O��2� , �12a�

Ne�N� =
�11�in�6� 1

G
+

G + H

G2 � + O��2� . �12b�

Again, systematic O��� errors are predicted. In this case,
however, the source is chains being too short to be in the
asymptotic entangled limit defined by Eq. �1�.

A key to understanding the failure of previous Ne estima-
tors is that differences in the prefactors of the O��� errors
�Eqs. �10� and �12�� arise from different treatment of chain
ends. The classical S-kink Eq. �5� underestimates Ne as long
as G+H
1, and the modified S-kink Eq. �6� strictly overes-
timates Ne since both G and H are positive. Similarly, the
prefactor �AY +BD−D2� /A2 �Eq. �10b�� of the systematic
O��� error in the modified S-coil Eq. �7� contains two con-
tributions of different origins. �AY +BD� /A2 arises from the
Gaussian-chain approximation used, while −D2 /A2 arises
from the attempt to correct for chain ends effects �i.e., the
“−1”�.

We have determined the coefficients A, B, D, G, H, and Y
using all available data from our simulations; their values for
both polymer models are shown in Table II. Coincidentally,
for LJ+FENE chains, �AY +BD� /A2�5�103 and D2 /A2

�7�103. The systematic O��� error for the modified S-coil
�7� is actually small for LJ+FENE systems due to the near
cancellation of its contributing terms. There is no reason to
believe this behavior is general, and tests on additional poly-
mer models would be necessary �36� to better characterize
how rapidly the modified S-coil typically converges. How-
ever, it is reasonable to expect it typically converges more
rapidly than the classical S-coil �4�.

Before turning to ideal estimators, we mention that the
modified S-kink �6� can be regarded as corrected version of
classical S-kink �5�, as it eliminates an O��� error from the
latter, and thus converges faster.

IV. IDEAL ESTIMATORS

Given the prevalence of subtle systematic O��� errors in
nonideal Ne estimators, it is reasonable to suppose that in
developing an ideal estimator, one has the freedom to intro-
duce system-dependent �but N-independent� coefficients,

e.g., c, c�, and Z0, in equations for a valid Ne�N� such as
N / �Z�+c�, N�1−c��� / �Z�, or N / ��Z�+Z0�. These formulas
are all potentially valid estimators because they fulfill the
basic requirement �Eq. �2��. The coefficients are somewhat
related to each other, but have slightly different physical
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FIG. 3. �a� Testing the applicability of Eq. �8� which predicts
linear behavior �slope �D, offset �Y� in this representation. We
obtain C����1.85 and C����8.3 for the LJ+FENE and PE mod-
els, respectively �cf. Table II�. �b� Testing the validity of Eq. �9� for
both types of melts �slope �A, offset �B�. The linear relationship is
employed to derive estimator �15� in Sec. IV B. �a�, �b� Data for
larger N are not shown but also agree to all displayed fit lines, to
within statistical errors.

TABLE II. Data obtained via Z1. The coefficients D, Y, A, and B have been obtained from a least square
fit to the available data �covering N�Ne� for �Ree

2 � and �Lpp�, according to Eqs. �8� and �9�. Similarly,
coefficients G and H derive from the measured �Z� via Eq. �11�.

System l0 C���

D Y A B G H

cf. Eq. �8� cf. Eq. �9� cf. Eq. �11�

LJ+FENE 0.964 1.852 1.72 3.55 0.020 1.04 0.020 0.12

Polyethylene 450 K 1.54 Å 8.318 19.7 Å2 131.4 Å2 0.22 Å2 8.58 Å2 0.023 0.20

Polyethylene 400 K 1.54 Å 8.535 20.2 Å2 85.3 Å2 0.24 Å2 9.37 Å2 0.025 0.19
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meanings. They fulfill conditions �i� and �ii� for arbitrary c
and c�, but only if Z0	1. Note that finding an ideal Ne
estimator neither depends on the interpretation of �Z� or re-
quires a priori knowledge of the numerical values of the
coefficients. However, these numerical values are required to
turn the above three expressions into Ne estimates before
they can be applied. As these numerical values are certainly
sensitive to system features such as chain thickness and stiff-
ness, it is impossible to determine them from a single set of
�Lpp�, �Ree

2 �, and �Z� values.
The best possible estimator gives Ne�N�=Ne for �Z��1,

but such an estimator would have to rely on incomplete in-
formation, some model assumptions, or make use of some
“universal” features of entangled systems such as those sug-
gested by Refs. �10,11�. We make use of two such findings
�Sec. III�: for the polymer models considered here, both �Z�
and �Lpp�2 / �N−1� are linear in �N−1� above certain charac-
teristic thresholds. Further supporting data for atomistic
polyethylene have been reported recently �24�.

For both models considered here, the “characteristic
thresholds” are located at �Z�
1 and N
Ne, allowing us to
make use of the “linearities” to construct ideal Ne estimators.
We now derive two near-ideal Ne estimators for kinks and
coils, respectively. These estimators operate on multiple �M�
systems with different chain lengths, rather than on a single
configuration, and will be denoted as M-coil and M-kink in
order to clearly distinguish between S and M estimators.
Careful empirical tests of the new estimators’ validity is
quite essential, and will be given in Sec. V.

Below, the idea behind the different roles of Eqs. �8�, �9�,
and �11� is that the statistics of the entanglement network can
be expected to be decoupled from the fractal dimension of
the atomistic chain because entanglements arise from inter-
chain rather than intrachain configurational properties. The
estimator we develop in the following section will, in fact,
potentially be applicable to non-Gaussian chains, where
�Ree

2 ���−� �with 1	�	2�, as well as less-flexible polymers
�like actin �37� or dendronized polymers �38�� for which Ne
is �18� of the order of a “persistence length” of the atomistic
chain.

A. M-kink estimator

Beyond some a priori unknown chain length N1, we know
that �Z� �as determined via Z1 or CReTA� varies linearly
with N, i.e., �Z�=GN+Z0 �with G�0, and Z0	−�G+H�
�−1 in the notation of Eq. �11��. We recall that an ideal Ne
estimator implies, according to condition �iii�, that

�vi� dNe�N� /dN=0 for N
N1, and
�vii� N1
Ne

are necessary to produce Ne=Ne�N1�. Uniquely, Ne=1 /G
and Ne�N�=Ne for all N�N1. Using the linear relationship
between �Z� and N we thus propose �a� Ne�N�=N / ��Z�
−Z0�, where Z0=Z0�N� is the coefficient determined from
data collected up to chain length N. Note that �a� is identical
with the Ne estimator suggested on mathematical grounds at
the beginning of this section.

However, Ne�N�=1 /G can be equivalently obtained
from �b� Ne�N�=dN /d�Z�. This is an estimator, denoted as
“M-kink,” of extraordinary simplicity,

1

Ne�N�
=

d�Z�
dN

. �13�

M-kink is strictly an ideal estimator �i.e., it satisfies all five
conditions proposed in Sec. III� provided N1
Ne. It elimi-
nates the unknown coefficient in the linear relationship, and
identifies Ne to be responsible for the ultimate slope of
�Z��N�. This is analogous with measurements of diffusion
coefficients, where one eliminates ballistic and other contri-
butions by taking a derivative. Application of Eq. �13� re-
quires studying more than a single chain length, which ren-
ders our M-kink estimator qualitatively different from the
S-kink estimators. Data for �Z��N� for both polymer models,
shown in Fig. 4, demonstrate that �Z� in fact becomes linear
in N for �Z� below unity �24,39�, thus confirming N1
Ne.
This suggests that Ne can be estimated using data for �Z�
from chains of lengths even below Ne.

The occurrence of a nonvanishing N1 is rooted in the fact
that a minimum polymeric contour length �of the order of
2�� with polymer thickness �, subsequently corrected by
chemical details� is needed for geometrical reasons to form
an entanglement �or tight knot� �40�. This length ��� in-
creases with the persistence length of the atomistic contour,
and vanishes in the limit of infinitely thin polymers. This
implies that determining Ne from the slope we correct for a
thickness effect, and N1 is proportional to the thickness of
the atomistic polymer.

B. M-coil estimator

Next, we motivate and derive a near-ideal estimator for
use with coil properties �Ree

2 � and �Lpp� �obtained via PPA,
CReTA, or Z1�. Flory’s characteristic ratio C�N� is defined
through the identity �41,42�
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FIG. 4. Z1 results for the two model polymer melts. Testing the

applicability of Eq. �11� which predicts linear behavior in this rep-
resentation �slope G, offset H�. Clearly �Z��N� becomes linear at an
N for which �Z�
1. This implies N1
Ne and that Eq. �13� can be
an ideal estimator. An interpretation for N1 is given in Sec. IV A.
Data for larger N are not shown here, but the slope d�Z� /dN does
not change significantly with increasing N.
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�Ree
2 � 	 �N − 1�l0

2C�N� . �14�

Equation �14� is exact by construction; the N dependence of
C�N� characterizes the �non-�Gaussian structure of chains. In
general, C�N�
1 if N�1. For �mathematically� ideal
chains, C�N� is related to the persistence length lp �35�. This
allows the chain stiffness constant C���	 limN→� C�N� to be
calculated from short chains for any sort of ideal chain, in-
cluding random walks, freely rotating chains, wormlike
chains, etc. Simulations on dense chain packings show �43�
that the value of C���=1.48 is a universal lower limit for
excluded volume, flexible chain molecules. For real chains
like polyethylene, chains much longer than lp need to be
studied to characterize C�N�, cf. Ref. �24�. We assume
knowledge of C�N� as function of N from the atomistic con-
figurations.

To proceed, we make use of our finding that �Lpp�2 / �N
−1� is linear in N above a certain characteristic N0, before
�Z��N� has reached unity, i.e., we assume N0	Ne to derive
an ideal estimator �15�. The linear relationship clearly holds
for both polymer models considered here �Ref. �24�, Table I,
Figs. 3�b� and 4�, and has already been formulated in Eq. �9�.
Next we relate �Lpp� and �Z� for large N�Ne by a simple
argument: the length of the primitive path, Lpp, is �18� the
number of “entanglement nodes,” N /Ne, times the mean Eu-
clidean distance �e between such nodes. This distance ��e�
equals the mean end-to-end distance of the atomistic chain
with Ne monomers. We thus expect that up to a factor of
order unity �related to fluctuations in �e �35��,
limN→��Lpp�2= �N /Ne�2�Ne−1�l0

2C�Ne�.
By following the procedure of Sec. IV A, we arrive at an

Ne estimator, denoted as “M-coil,” using coil properties
alone,


C�x�
x

�
x=Ne�N�

=
d

dN

 �Lpp�2

RRW
2 � , �15�

where RRW
2 	�N−1�l0

2, and C�x� is the characteristic ratio for
a chain with Ne�N� monomers. This estimator fulfills all con-
ditions from our above definition of an ideal estimator. As for
M-kink, the derivative in the M-coil Eq. �15� signals that we
have to measure �Lpp� as function of N rather than a single
value to estimate Ne. The convergence properties are not as
clear a priori as they are for the M-kink estimator Eq. �13�,
as this derivation required an approximation. In practice, one
must simulate systems with increasing N until the M-coil
converges. There is no apparent way to come up with an Ne
estimator from coil quantities which converges before N
reaches Ne. This is a noticeable difference between the esti-
mators from coils and kinks �M-kink�. Technical consider-
ations in the application of Eq. �15� are discussed in Appen-
dix B.

V. NUMERICAL RESULTS AND DISCUSSION

The data in Table I and a similar set for atomistic poly-
ethylene �configurations from Ref. �24��, will now be used to
test the M estimators. Figure 5 shows results for the M-kink
estimator �Eq. �13�� and M-coil estimator �Eq. �15�� for the
same systems analyzed in Figs. 1 and 2. Comparison of these

figures shows that the M estimators indeed converge faster
than the S estimators �Eqs. �4�–�7��. Moreover, comparison
to Fig. 4 shows that the M estimators converge for margin-
ally entangled systems; values of Ne�N� approach Ne before
�Z� far exceeds unity. These show that Eqs. �13� and �15� are
essentially “ideal,” meeting all of conditions �i�–�v�. The
kink estimator performs slightly better, presumably because
of the approximations made in deriving Eq. �15�.

For LJ+FENE systems with N
50, values of Ne�N�
from M-kink �13� increase with decreasing N. As shown in
Fig. 5, Ne�N� appears to be diverging as N→0. The precise
nature of the divergence is unimportant. For example, N
=20 chains have �Z�=0.127, and the vast majority have zero
entanglements, so the prediction Ne�20�=192�20 of modi-
fied S-kink �6� just signals that we are deep in the unen-
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FIG. 5. �Color online� �a� Performance of proposed estimators
M-kink �13� �lower two curves with large symbols� and M-coil �15�
�upper two curves with large symbols�; see also Appendix B. Data
are for the same systems analyzed in Figs. 1 and 2. Clearly, Ne�N�
has converged for N�100, and as shown by comparison to Fig. 4,
Ne�N� approaches Ne before �Z� exceeds unity. This allows us to
estimate Ne from mostly unentangled systems. �b� Same data as in
�a� vs log10 N, which allows the full range of N to be presented. For
comparison, blue broken and red dashed lines for PE and LJ
+FENE, respectively, show reference data for S estimators, already
presented in Figs. 1 and 2.
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tangled regime, where Ne cannot yet be estimated.
The fast convergence of the M-kink estimator can be bet-

ter understood by plugging Eq. �11� into M-kink �13�. This
produces a special case of the M-kink estimator, which is
only asymptotically correct, and can be used when Eq. �11�
holds. We refer to it as the “approximate M-kink” estimator,

Ne�N� �
1

G
. �16�

Here, G is the coefficient in the linear relationship between
�Z� and N obtained from data collected up to chain length N,
and thus Ne�N� depends on N. Note that the derivative with
respect to N in Eq. �13� removes the O��� errors. This is a
major difference with respect to all S estimators �the estima-
tor used in �9� can be considered as intermediate between S
and M estimators�.

In a similar attempt to rationalize the fast convergence of
the M-coil estimator, we insert Eqs. �8� and �9� into Eq. �15�.
This yields, accordingly, the “approximate M-coil” estimator,

Ne�N� � 1 +
D + 
D2 − 4AY

2A
. �17�

Like Eq. �16�, Eq. �17� has no O��� corrections. Again, this
arises from the “M” approach of taking derivatives with re-
spect to N. In both cases, the use of the derivatives removes
undesirable effects related to proper treatment of chain ends.
The approximate M-coil estimator is related only to the �in
general, non-Gaussian� structure of chains and primitive
paths. Finally, if the assumptions which lead to Eq. �10� hold,
and in order to quantify the contributions to Eq. �17�, the
above analysis combined with tube-theoretic considerations
suggests another estimator, which we refer to as “simplified
M-coil,”

Ne�N� �
D

A
. �18�

The only dependence on N of the approximate and simplified

estimators, Eqs. �16�–�18�, stems from the variation of A, D,
G, and Y with N; these coefficients, which are obtained by
linear interpolation, must generally be assumed be consid-
ered to depend on the available range of studied chain
lengths. When the variation in the coefficients is large, these
three estimators should not be used.

Note that the simplified M-coil does not agree with
M-coil if C�Ne� has not reached C���; though it may con-
verge quickly, it cannot be ideal. For the systems under
study, Ne is large enough such that C�Ne� is quite close to
C��� �44�. The simplified M-coil has a simple connection to
polymer structure and the tube model �1�. D=C���l0

2= l0lK,
where lK is the Kuhn length �35�. The tube diameter dT is
given by dT

2 = l0lKNe, and hence A= �dT /Ne�2.
Table III quantifies the performance of the new M estima-

tors. The two presented values for each estimator Ne�N� are
the final Ne, obtained by analyzing all available chain
lengths, together with the value predicted by the estimator at
N=Ne �i.e., at the border between unentangled and entangled
regimes, using only chains of length up to �Ne�. For an ideal
M estimator these two numbers should be the same within
statistical errors, here �2.5%, and Ne should coincide with
limN→�N / �Z�. All four M estimators considered here, the
complete ones �Eqs. �13� and �15�� as well as their approxi-
mate versions �Eqs. �16� and �17�� satisfy these criteria. The
simplified M-coil �18� is seen to converge quickly as well,
but it does converge to an Ne, which is above the one ob-
tained via M-coil, because Y is positive �Y vanishes for an
ideal random walk�. Table IV shows corresponding results
for the S estimators, which all �as discussed above� are gen-
erally nonideal. Still, the modified S-kink turns out to per-
form very well, simply because G+H�1 for our model sys-
tems, cf. Table II.

For the LJ+FENE model, while the classical S-coil esti-
mator �Eq. �4�� produces values of Ne consistent with pub-
lished �9� results, i.e., Ne�70 for N=350 and 500, values for
these estimates based on the near-ideal M estimators �cf.
Table III� and also the modified S-coil �7� rise above 80 for
the longest chains considered here. The M estimators based
on chain and �Z1� primitive path dimensions converge to the

TABLE III. Data obtained via Z1. Selected results for Ne�N� for all near-ideal M-coil and M-kink estimators defined in this manuscript.
For each estimator, two characteristic values are shown: Ne uses all available N �up to N=3500 and N=1000 for the LJ+FENE and PE
models, respectively�, and Ne�Ne� uses only data from short chains with N	Ne �cf. Table I�. Values of Ne�Ne� are thus obtained at moderate
computational cost, and are all in overall agreement with Ne. Approximate M-coil �M-kink� results should coincide with M-coil �M-kink�
results, if the relationships �8�, �9�, and �11�, respectively, accurately hold. The simplified M-coil does not take into account the effect of
C�N�. M-coil �M-kink� is the estimator with the least assumptions involved, if Ne needs to be estimated from coil �kink� information �see also
Appendix B�. The fact that for all these estimators Ne�Ne��Ne gives sufficient evidence that these are in fact ideal estimators, in sharp
contrast to most S estimators, quantitatively discussed in Table IV. Note that the very similar values of Ne reported for LJ+FENE and PE
systems are a pure coincidence arising from their similar values of D /A �Table II; cf. Eq. �18��.

Ne Ne�Ne� Ne Ne�Ne� Ne Ne�Ne� Ne Ne�Ne� Ne Ne�Ne�

M-coil Approximate M-coil Simplified M-coil M-kink Approximate M-kink

System Eq. �15� Eq. �17� Eq. �18� Eq. �13� Eq. �16�

LJ+FENE 86.1 87.8 85.1 89.6 86.2 90.1 48.9 46.3 48.5 55.7

Polyethylene 450 K 84.0 83.4 84.4 84.5 90.6 90.1 44.2 42.2 43.3 38.8

Polyethylene 400 K 82.3 80.1 80.5 77.8 83.9 84.1 41.5 38.5 40.1 36.3
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value Ne�85 in the mostly unentangled regime, cf. Table III.
Thus all data suggest that the “best” estimate of the entangle-
ment length for flexible chains is well above the previously
reported value. This is significant, e.g., for quantifying the
ratio Ne /Nc, where Nc is the rheological crossover chain
length where zero shear viscosity changes its scaling behav-
ior from Rouse to reptation, and has been estimated as Nc
�100 �3,45�.

One could imagine fitting the squared contour length
�Lpp

2 �n�� of primitive path subsections �46� to �Lpp
2 �n��=An2

+Cn and attempting to calculate Ne�N�=D /A by also fitting
to �R2�n��=Dn−Y, or developing other improved estimators
for Ne based on �Ree

2 �n�� and �Lpp
2 �n��. However, analysis

along these lines failed to produce any estimators better than
those described above. In particular, no improvement over
the method of Ref. �9� was found.

It is important to notice that our Eq. �15� is not compatible
with some earlier definitions of �Z� from coil quantities, be-
cause of the prefactor C��� /C�Ne�. This prefactor had usu-
ally been omitted or not mentioned since random-walk sta-
tistics were clearly a convincing starting point. Assuming
Gaussian statistics �constant C�N� for all N� hence underes-
timates values of Ne calculated from coil properties. This
issue is also one of the reasons why the Ne estimates between
PPA and geometrical approaches differ. Another reason is
given in �29�. Ratios between 1.3 and 2.5 between Ne calcu-
lated from kinks and coils have been reported �7,10,11,15�.
The presented data exhibits ratios between 1.6 and 2. A third
reason that they differ is rooted in the fact that �Z� is not �7�
uniquely defined from a given shortest, piecewise straight
path, as it is returned by Z1 or CReTA. This additional dis-
crepancy can only be resolved by matching results for Ne
from kinks and coils, and by comparison with experiments.

The classical S-kink �5� strictly underestimates Ne and the
modified S-kink �6� strictly overestimates Ne �since both G
and H are positive, and G+H
1�.

VI. CONCLUSIONS

Very significantly improved, near-ideal, and apparently
polymer-model-independent estimators for Ne were derived
in this paper, M-coil �Eq. �15�, to be used with PPA, Z1, or
CReTA� and M-kink �Eq. �13�, Z1 and CReTA only�. They

reduce, under further assumptions which seem valid for the
model systems studied here, to approximate M-coil �Eq.
�17��, simplified M-coil �Eq. �18��, and approximate M-kink
�Eq. �16��. These estimators require simulation of multiple
chain lengths, but have eliminated systematic O��� errors
present in previous methods. This is important for the design
of efficient simulation methods in the field of multiscale
modeling of polymer melts.

Furthermore, we have proposed variants of the original
estimators. The two main problems with existing estimators
were identified as: �i� improper treatment of chain ends, and
�ii� nontreatment of the non-Gaussian statistics of chains and
primitive paths �36�. Improper handling of thermal fluctua-
tions was an additional problem relevant to very short
chains. Issues �i� and �ii� lead to separate independent O���
errors. Estimators based on direct enumeration of entangle-
ments lack issue �ii�, and so are fundamentally advantageous
for estimation of Ne. The new “M” estimators proposed here
formally correct for the errors arising from effects �i� and
�ii�. The values of the M-coil and M-kink estimators can be
taken as “best estimates” for Ne when results are available
for multiple chain lengths. The best estimator when only a
single chain length is available is the modified S-kink, Eq.
�6�.

We have shown that � �Lpp�2, �Z�, and also �Ree
2 � are all

linear in 1 /� �thus linear in N� down to the mostly unen-
tangled regime, and have used this information to derive the
M estimators and to improve the earlier ones. All coefficients
in these linear relationships have been evaluated and listed in
Table II. The prefactors for the above-mentioned O��� errors
can be large, and depend both on the polymer model and
method of topological analysis. These errors can produce
large changes in estimates of Ne for values of N typically
considered in previous studies �e.g., Refs. �6,12,33��. This is
significant in light of attempts to compare PPA results for Ne
to values obtained by other methods �6,23,33,47� such as
direct rheological measurement of the plateau modulus GN

0 ,
evolution of the time-dependent structure factor S�q� , t�, and
estimation of the disentanglement time �d� �N /Ne�3 �1�.
Some conclusions of those studies may need to be reevalu-
ated in light of the new data.

The proposed M estimators are estimators which exhibit
all features required for an ideal estimator �a term which we
made precise in Sec. II�, and they have been physically mo-

TABLE IV. Data obtained via Z1. For comparison with Table III. Performance of previous S-coil and
S-kink estimators. Accurate Ne values have been overtaken from M-coil and M-kink in Table III. Obviously,
Ne�Ne� is far from being close to Ne in all cases, while the deviations are strongest for the Ne estimates based
on coils; the two kink measures seem to at least bracket the true Ne �for the deeper reason that Z0, introduced
in Sec. IV, must obey Z0� �−1,0��.

Ne Ne�Ne� Ne Ne�Ne� Ne Ne�Ne� Ne Ne�Ne�

Classical S-coil Modified S-coil Classical S-kink Modified S-kink

System Eq. �4� Eq. �7� Eq. �5� Eq. �6�

LJ+FENE 86.1 40.0 86.1 129.7 48.9 31.7 48.9 51.2

Polyethylene 450 K 84.0 39.7 84.0 192.8 44.2 30.4 44.2 48.3

Polyethylene 400 K 82.3 37.3 82.3 191.8 41.5 28.8 41.5 44.9

HOY, FOTEINOPOULOU, AND KRÖGER PHYSICAL REVIEW E 80, 031803 �2009�

031803-10



tivated. They converge to Ne for weakly entangled systems
�N	Ne�. They leave Ne either undefined or infinite for rod-
like chains �because C�N�=N for a rod�. They predict
Ne�N�
N for a completely unentangled system, which is
characterized by �Z�=0 and Lpp=Ree in accord with the defi-
nition of the primitive path which we have adopted in this
work �see �29��. The appearance of the coefficient N1 sug-
gests that there might be a minimum amount of material, N1,
needed to form a single entanglement �as observed for phan-
tom chains �7��. If so, it can be expected to depend on the
thickness of the atomistic chain and its stiffness as well as
particle density. We expect our findings to be universal in the
sense that they should apply to all sorts of real linear poly-
mer chains in the melt state, and we have verified the as-
sumptions underlying the M estimators by direct comparison
with both atomistic semiflexible and coarse-grained flexible
polymer melts.

References �11,15� pointed out that primitive paths are not
random walks, and that there appears to be more than one
“topological” entanglement per “rheological” entanglement;
thus it is unsurprising that Ne from coils is significantly
larger than Ne from kinks �for details see Ref. �18��. The
utility of any topological analysis of chains shorter than Ne
remains highly questionable because the chains’ dynamics
are well described by the Rouse model �1,19� and so they
cannot be considered “fully entangled” in any meaningful
way. However, it seems that the M estimators developed in
this work have the ability to extract information from a par-
tial or even marginal degree of entanglement.

The M estimators could be applied in a postprocessing
step on existing configurations. For example, it should be of
interest to study the effect of flow and deformation on en-
tanglement network characteristics in order to establish equa-
tions of motion for relevant coarse-grained variables charac-
terizing the polymer melt. Shear and elongational flows have
been studied for both polymer models considered here, but
either Z1 was not yet available at the time of these studies
�48�, or the chains were �49,50� “too short,” i.e., had �Z�
�1.

The apparent ability to accurately estimate Ne even for
weakly entangled systems may be useful for atomistic mod-
els whose computational cost prohibits equilibrating large-N
systems, such as polymers containing bulky side groups. The
procedure for removal of the O��� systematic errors, while
clearly described here, requires performing analyses on a
limited number of configurations on a range of chain lengths,
which is most easily undertaken for systems composed of
“short, but not too short” chains. Independent recent work by
Tzoumanekas et al. �51� follows a similar approach.
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APPENDIX A: TREATMENT OF THERMAL
FLUCTUATIONS

Reference �6� and other studies have typically used �Lpp�2

rather than �Lpp
2 � in estimators for Ne, such as the analog for

the modified S-coil �7�, which reads

Ne�N� = �N − 1�
 �Lpp�2

�Ree
2 �

− 1�−1

. �A1�

However, Eq. �A1� gives pathological results for short chains
due to thermal fluctuations of Lpp. Consider the unentangled
limit, where the entanglement density �denoted as �e� van-
ishes. For an “ideal” topological analysis, Lpp→Ree �from
above� for each and every chain as �e→0. However, chain
dimensions fluctuate in thermodynamic equilibrium �1�. To
leading order in the fluctuations, �Lpp�2= �Lpp

2 �− ��Lpp�2

	�Ree
2 �− ��Ree�2, where � is “variance of.” So, even for an

ideal topological analysis procedure, Eq. �A1� would predict
a negative Ne�N�→−�N−1��Ree

2 � / ��Ree�2 as �e→0. Nega-
tive Ne�N� are of course useless, but indeed, are predicted
using our data in Table I. For N=20 �LJ+FENE melt�, ap-
plication of Eq. �A1� yields negative Ne�20�. A term identi-
cal to the term in parentheses in Eq. �A1� was found to be
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FIG. 6. �Color online� Graphical demonstration of evaluation of
Ne�N� using the M-coil estimator �15�. Shown are both the lhs
C�N� /N, and rhs of Eq. �15� for both types of polymer melts. The
dotted �red� path shows how to obtain Ne�N��87 for a given N;
here N=48. As described in Appendix B, this value is identical with
both Ne and Ne�Ne�, cf. Table III. The ratio C�N� /N �small points�
monotonically decreases with increasing N, while the rhs �large
symbols� reaches a plateau when N has approached Ne �at the in-
tersection of the curves�, which is a distinguishing feature of an
ideal estimator.
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negative for short chains in Ref. �49�, but was not used to
directly calculate Ne�N� in their work, as its negative value
was considered to signal �and to only occur in� the mostly
unentangled regime.

The reason to fix chain ends during PPA or Z1 analysis is
the assumption, implicit in Edwards’ definition of the primi-
tive path �4�, that chains are entangled. In this context it is
worthwhile mentioning that there are other definitions of
PP’s, for example one �52� where the length of the PP goes
down to zero for the unentangled chain, and where chain
ends are not fixed.

APPENDIX B: TECHNICAL CONSIDERATIONS IN
USE OF THE M-COIL ESTIMATOR

While the M-kink estimator �Eq. �13�� is explicitly evalu-
ated from the local derivative d�Z� /dN around N, our M-coil
expression, Eq. �15�, is only an implicit expression for the
estimator Ne�N�. Formally, we need the inverse of C�N� /N
to calculate Ne�N�. In the following, we describe the proce-
dure in order to prevent any ambiguities upon applying
M-coil in practice. Figure 6 shows both the left-hand side
�lhs� and right-hand side �rhs� of Eq. �13� versus N for our
data. For any given N �say, N=48 for the PE data, where the
dotted red line starts in Fig. 6�, the Ne�N� estimate is the

value at the ordinate for which the abscissa values for lhs and
rhs coincide �end of the red curve is at Ne�48��87�. The
same procedure is repeated for all N to arrive at Fig. 5 and
particular values collected in the M-coil row of Table III. The
difference between lhs and rhs can be used to estimate the
difference between the largest N available and Ne. If only
short chains had been studied, only a part of this plot could
have been drawn.

Note that this procedure requires C�N� /N to be monotoni-
cally decreasing with N, and access to C�N� at sufficiently
large N. While the former is essentially valid for all polymer
models, the latter may pose a problem. Without reliable val-
ues for C�N� for N=Ne, there is no apparent way to come up
with an M- coil which converges before N reaches Ne. How-
ever, since C�N� /N decreases with increasing N and ulti-
mately reaches C��� /N behavior, in practice �and formally
for ideal chains� C�N� can be estimated by extrapolation, and
the necessary C�N� /N values could be added for chain
lengths exceeding those studied.

This issue disappears by construction when the largest
simulated N exceed Ne�N�, so that the conditions for an ideal
estimator are met in any case. Still, this is a noticeable
and principal difference between the estimators from coils
�M-coil� and kinks �M-kink�.
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